
ou have just inherited a production MySQL system and there is no
confirmation that an existing MySQL backup strategy is in operation.
What is the least you need to do? Before undertaking any backup
strategy, you should consider some necessary prerequisites about your
database size and storage engine usage that have a direct effect on

your system availability during any backup approach.
In this chapter we will discuss the approach necessary to identify a minimum

functionality backup including:

 ! Determining your database size

 ! Determining your storage engine usage

 ! Locking and downtime implications

Approaching a MySQL Backup
There is more than one strategy to backup a MySQL environment. These strategies
also depend on the number of servers in the MySQL topology. There are a number
of various open source and commercial tools available to perform backups. In
Chapter 2 we will be discussing all these possible options in detail.

Suppose that you have an environment with a single server and you want to
create a consistent backup. You have two immediate options at your disposal. The
first option is to stop your MySQL instance and take a full file-system cold backup.
This would result in your system being unavailable for an undetermined time, and
you would need to ensure that you make a copy of all the right information
including MySQL data, transaction and binary logs if applicable, and the current
MySQL configuration.

Your second option is to use a client tool included with the standard MySQL
installation. The mysqldump command can produce a consistent MySQL backup
without stopping the MySQL instance. However, before running mysqldump, you
must consider several important factors in order to make an informed decision
about the best options to use. These factors are:

 ! What is the size of the backup?

 ! What locking strategy is necessary?

 ! How long will the backup take?

Y

ch02_promo.indd 1 24/08/11 5:58 PM

Determining Your Database Size
An important consideration for performing a MySQL backup is the size of your
backup when backing up to local disk. This is required to ensure that you have
available disk space to store your backup file.

The following SQL statement provides the total size in MB of your current data
and indexes.

mysql> SELECT ROUND(SUM(data_length+index_length)/1024/1024)
 -> AS total_mb,
 -> ROUND(SUM(data_length)/1024/1024) AS data_mb,
 -> ROUND(SUM(index_length)/1024/1024) AS index_mb
 -> FROM INFORMATION_SCHEMA.tables;
+----------+---------+----------+
| total_mb | data_mb | index_mb |
+----------+---------+----------+
| 927 | 847 | 80 |
+----------+---------+----------+

Your mysqldump backup will be approximately the same size as your data with
an appropriate safety margin of 10 to 15 percent. There is no precise calculation;
however, your backup produces a text-based output of your data. It is possible to
compress your backup concurrently or to transfer to a different network device.
These options and their limitations are discussed in Chapter 2.

From this SQL statement the database data size is 847M. For later reference, the
size of the backup file as described in the section running mysqldump reports a
size of 818M using the common default options.

Choosing a Locking Strategy
The locking strategy chosen will determine whether your application can perform
write operations with your database during the execution of a backup. By default,
mysqldump performs a table level lock to ensure a consistent version of all data
using the LOCK TABLES command. This occurs with the --lock-tables
command line option, which is not enabled by default. This option is part of the
--opt option, which is enabled by default. You can elect to not lock tables;
however, this may not ensure a consistent backup. When you are using the MyISAM
storage engine, --lock-tables is necessary to ensure a consistent backup.

Alternatively, mysqldump provides the --single-transaction option,
which creates a consistent version snapshot of all tables in a single transaction. This
option is only applicable when using a storage engine that supports multiversioning
(MVCC). InnoDB is the only storage engine included in a default MySQL installation
that is applicable. When specified, this option automatically turns off --lock-
tables.

ch02_promo.indd 2 24/08/11 5:58 PM

The following SQL statement will confirm the storage engines in use for your
MySQL instance.

mysql> SELECT table_schema, engine, COUNT(*) AS tables
 -> FROM information_schema.tables
 -> WHERE table_schema NOT IN
 -> ('INFORMATION_SCHEMA','PERFORMANCE_SCHEMA')
 -> GROUP BY table_schema, engine
 -> ORDER BY 3 DESC;
+--------------------+--------+--------+
| table_schema | engine | tables |
+--------------------+--------+--------+
shopping_cart	MyISAM	109
cust_db	InnoDB	48
mysql	MyISAM	21
analytics	InnoDB	20
phpmyadmin	MyISAM	8
newsletter	MyISAM	8
cust_db	MyISAM	3
mysql	CSV	2
+--------------------+--------+--------+

In this example, the MySQL instance has several different schemas that support
various functions including a shopping cart and administration tool. An InnoDB
only application may look like this:

+--------------------+--------+--------+
| table_schema | engine | tables |
+--------------------+--------+--------+
prod_db	InnoDB	122
mysql	MyISAM	21
mysql	CSV	2
+--------------------+--------+--------+

As you see in the example, the mysql meta schema uses MyISAM. It is not
possible to change this. The two CSV tables in the mysql schema are used for SQL
logging and the data is not necessary for any backup strategy. If your database is all
InnoDB, you will have two options regarding the MyISAM mysql tables, which we
will discuss later in this chapter.

Execution Time
The most important requirement is to determine how long your backup will take.
There is no calculation that can give an accurate answer. The size of your database,
the amount of system RAM, the storage engine(s) in use, the MySQL configuration, the
hard drive speed, and current workload all contribute to the calculation. What is
important when performing a backup is to gather this information for future reference.

ch02_promo.indd 3 24/08/11 5:58 PM

The execution time is important, as this is an effective maintenance window for
your database. During a database backup there may be a limitation of application
functionality, there may be a performance overhead in performing the backup, and
your backup may limit other operations, including batch processing or software
maintenance.

Combining Information
The following is a recommended SQL statement that combines all information for
an audit of your database size.

$ cat storage_engines.sql
SELECT table_schema, engine,
 ROUND(SUM(data_length+index_length)/1024/1024) AS total_mb,
 ROUND(SUM(data_length)/1024/1024) AS data_mb,
 ROUND(SUM(index_length)/1024/1024) AS index_mb,
 COUNT(*) AS tables
FROM information_schema.tables
GROUP BY table_schema, engine
ORDER BY 3 DESC;

mysql> source storage_engines.sql
+--------------------+--------+----------+---------+----------+--------+
| table_schema | engine | total_mb | data_mb | index_mb | tables |
+--------------------+--------+----------+---------+----------+--------+
analytics	InnoDB	10903	10525	378	20
cust_db	InnoDB	1155	962	194	48
newsletter	InnoDB	514	278	237	7
shopping_cart	MyISAM	27	19	8	109
cust_db	MyISAM	9	3	7	3
mysql	MyISAM	1	0	0	21
information_schema	MyISAM	0	0	0	8
information_schema	MEMORY	0	0	0	20
mysql	CSV	0	0	0	2
+--------------------+--------+----------+---------+----------+--------+

Performing a MySQL Backup
Now that you have gathered the prerequisite information, you have the details
necessary to make an informed decision.

The choice of how to perform a backup, when to perform it, and how you
monitor and verify is a more complex process, which is discussed in more detail
starting with Chapter 2.

One additional consideration during a backup process is to disable any cron or
batch processes during the backup to minimize additional workload. This can
minimize database contention and shorten the window of time needed.

ch02_promo.indd 4 24/08/11 5:58 PM

Running mysqldump
In the simplest form, you can perform a backup using mysqldump with the
following syntax.

$ time mysqldump -uroot -p[password] --all-databases > backup.sql
$ echo $?
$ ls -lh backup.sql

 ! The first command runs the mysqldump for all databases, producing an
ASCII dump in the backup.sql file.

 ! The second command confirms the exit status of the first command. A non-
zero result is an indication of a problem during the backup process. If any
errors occur, these are generally shown in the screen output.

 ! The third command shows the size of your backup file for later reference.

For example:

$ time mysqldump -uroot -p[password] --all-databases > backup.sql
real 0m35.493s
user 0m9.808s
sys 0m3.021s
$ echo $?
0
$ ls -lh backup.sql
-rw-rw-r-- 1 usr grp 818M Aug 10 21:37 backup.sql

This is a successful backup file totaling 818M that took 35 seconds to execute.
The original size of the database data as shown previously for this MySQL instance
was 847M.

TIP
Prefixing the mysqldump command with the time
command will provide valuable information on
the actual time taken. Recording your backup time
and size is an important administration step that
all DBAs should do. This time information is useful
for scheduling other system requirements, for an
additional verification step if a successful backup
has a significantly different time, and it is helpful
in benchmarking with using different arguments,
MySQL configuration settings, or changes in
physical hardware.

ch02_promo.indd 5 24/08/11 5:58 PM

An example of an error condition may look like this:

$ time mysqldump -uroot -p[password] --all-databases > backup.sql
mysqldump: Got error: 1142: SELECT,LOCK TABL command denied to user
'root'@'localhost' for table 'cond_instances' when using LOCK TABLES
real 0m7.692s
user 0m1.780s
sys 0m0.313s
$ echo $?
2
$ ls -lh backup.sql
-rw-rw-r-- 1 usr grp 94M Aug 10 21:28 backup.sql

A backup file as per this example may in isolation appear to be completely
valid. That is, this file contains valid and complete SQL statements, and can be
successfully used to restore data in one or more schemas; however, it is incomplete
as a full backup of all data. The execution time, error status, and size are all
important information for verification of a successful backup.

Creating a backup is only the first step in a suitable strategy that should support
both a static and point in time recovery. It is important that this backup file can be
used successfully in recovery. This is discussed in Chapter 5.

Securing Your Backup
The final step in a minimal backup approach is to ensure the security of your data.
The backup is currently on the same system as your data. A loss of this system
would include the data and your backup. The minimum you should undertake is to
copy your backup to a secondary location: For example:

$ time gzip backup.sql
$ scp backup.sql.gz another-server:backup-dir

Benefits with mysqldump
The mysqldump command provides a SQL-based backup file. This can be ideal for
creating a backup that can be executed on different versions of MySQL, and on
different operating systems. For example, you can view this file directly and see SQL
statements:

$ more backup.sql

--
-- Current Database: `mysql`
--
CREATE DATABASE /*!32312 IF NOT EXISTS*/ `mysql` /*!40100 DEFAULT CHAR-
ACTER SET latin1 */;

ch02_promo.indd 6 24/08/11 5:58 PM

USE `mysql`;
--
-- Table structure for table `help_topic`
--
DROP TABLE IF EXISTS `help_topic`;
/*!40101 SET @saved_cs_client = @@character_set_client */;
/*!40101 SET character_set_client = utf8 */;
CREATE TABLE `help_topic` (
 `help_topic_id` int(10) unsigned NOT NULL,
 `name` char(64) NOT NULL,
 `help_category_id` smallint(5) unsigned NOT NULL,
 `description` text NOT NULL,
 `example` text NOT NULL,
 `url` char(128) NOT NULL,
 PRIMARY KEY (`help_topic_id`),
 UNIQUE KEY `name` (`name`)
) ENGINE=MyISAM DEFAULT CHARSET=utf8 COMMENT='help topics';
/*!40101 SET character_set_client = @saved_cs_client */;
--
-- Dumping data for table `help_topic`
--
LOCK TABLES `help_topic` WRITE;/*!40000 ALTER TABLE `help_topic` DIS-
ABLE KEYS */;
INSERT INTO `help_topic` VALUES (0,'MIN',16,'Syntax:\nMIN([DISTINCT]
expr)\n\n
Returns the minimum value of expr. MIN() may take a string argument;
in\nsuch cases,
it returns the minimum string value. See\nhttp://dev.mysql.com/doc/
refman/5.1/
en/mysql-indexes.html. The DISTINCT\nkeyword can be used to find the
minimum of ...

More Information
For more information about the various options with mysqldump, you can obtain a
list of valid options with the following syntax:

$ mysqldump --help

You can find detailed information in the MySQL reference manual at http://dev.
mysql.com/doc/refman/5.5/en/mysqldump.html.

Other Options
If your database uses all InnoDB tables, the default locking strategy is restrictive.
You have to consider the impact of the mysql schema MyISAM tables. Under
normal circumstances, you can generally ignore the consistency requirement,

ch02_promo.indd 7 24/08/11 5:58 PM

providing you do not perform operations that change the metadata. This includes
adding or changing users and privileges, and creating or dropping database
schemas. Alternatively, you may elect to perform two separate backups. The first
backup excludes the mysql schema using the --single-transaction option.
The second backup only includes the mysql schema and uses the default locking
approach. This will be discussed more in Chapter 2.

Conclusion
An appropriate MySQL backup strategy is an essential component for any running
production system. For a simple installation, the implementation of a backup
strategy can occur in minutes as demonstrated in this chapter. However, a backup
strategy is only as good as the process to perform a successful, timely, and complete
recovery using the backup strategy. Chapter 4 will provide a detailed explanation
for a successful recovery.

There are a number of important considerations when using the output of
mysqldump for recovery that may affect how you execute your backup command.
Chapter 2 will discuss these points.

This chapter has also introduced a number of common terms including
consistent, valid, complete, and point in time. We will define these terms in greater
detail in Chapter 2.

ch02_promo.indd 8 24/08/11 5:58 PM

